q^2=20

Simple and best practice solution for q^2=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2=20 equation:



q^2=20
We move all terms to the left:
q^2-(20)=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| 3=2x/8 | | 6+4k=50 | | √2x+1=17 | | 7(x)-3=5(x)+15 | | 8t+2=7t-2 | | 12x-4x²=0 | | x*57=23 | | 9c+2=2c-47 | | x*23=57 | | 84x^2+84x=0 | | 23=3x+-8 | | 3/2b+(b+45)+90+(2b+90)+b=540 | | (4x+1)^2=64 | | 1.50b+(b+45)+90+(2b+90)+b=540 | | m=311,12 | | -36=-4.5c | | 5x+2+3x+5+8x+8+5x+10+4x+15=540 | | -15x=-720 | | 3x(x-3)=5x2-10x | | 6=1+5t-5t^2 | | 0.5x=0.2x-3 | | 4x-20=3x-25 | | 3a+4a+1=15 | | 4x=4x+3+18 | | 5x-9+7x=10 | | 5-12x-1/4=1 | | 4(x-4)+7x=15+10x | | 2x+53(8−5x)=−3 | | -16t^2+100t-34=0 | | −5/2(3+5y)−3y=8 | | 5x-11=-55-6x | | −52(3+5y)−3y=8 |

Equations solver categories